Fractions: Multiply Mixed Number by Integers

Aim:

Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.

To multiply mixed numbers by an integer.

Success Criteria:

I can use repeated addition to multiply a mixed number by an integer.
I can convert a mixed number to an improper fraction to multiply it by an integer.
I can partition the mixed number into a whole and fraction to multiply it by an integer.

Key/New Words:

Fraction, multiply, integer, mixed number, improper fraction, whole.

Resources:
Lesson Pack

Preparation:

Multiplying Mixed Numbers by an Integer Activity Sheets - one per child
Diving into Mastery Activity Sheets as required

Prior Learning: Children need to be able to multiply fractions by an integer. Use the second and third lessons in this series to teach multiplication

Learning Sequence

Remember It: Children recap their ability to multiply proper fractions by an integer as shown on the Lesson
Presentation. They sort the calculations into three categories, based on the size of the answer.
Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity.
These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section
and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are
applying this to show their depth of understanding.
Children practise their fluency skills by using the different methods used in the lesson to complete
multiplication of mixed numbers by an integer.
Children answer a word problem involving multiplication of a mixed number by an integer. They
choose the correct inequality symbol to compare calculations.
Children show their depth of understanding by completing open-ended questions and following
clues to find possible calculations.

Exploreit

Playit: Children roll a dice three times and use the numbers rolled to make a mixed number (ensure numerator is smaller than the denominator). Then they roll another number and use this number to multiply the mixed number by. They calculate the answer. Meanwhile, their partner does the same. The person with the greater answer scores a point.
Learnit: Children will find this superb Knowledge Organiser an excellent tool for strengthening their knowledge of fractions.

 Maths
 Fractions

Monkiply Mixed Nombers by Integers

Aim

- To multiply mixed numbers by an integer.

Success Criteria

- I can use repeated addition to multiply a mixed number by an integer.
- I can convert a mixed number to an improper fraction to multiply it by an integer.
- I can partition the mixed number into a whole and fraction to multiply it by an integer.

Remember It

Calculate and sort. One has been done.

$\left.\begin{array}{l}\frac{1}{4} \times 3= \\ \frac{2}{5} \times 4= \\ \frac{2}{9} \times 8= \\ \frac{3}{7} \times 8= \\ \hline \frac{2}{5} \times 2=\frac{2}{5} \\ \hline \text { answer less than } 1 \\ \hline\end{array}\right)$ answer between 1 and 3

Repeated Addition

There are different methods to multiply a mixed number by a whole number. One method is to use repeated addition.

Repeated Addition

Use repeated addition. Draw your own diagrams to help calculate the answer.

Repeated Addition

Use repeated addition. Draw your own diagrams to help calculate the answer.

There are 9 wholes and 3 two-fifths which is $\frac{6}{5}=1 \frac{1}{5}$.

$$
9+1 \frac{1}{5}=10 \frac{1}{5}
$$

Using Improper Fractions

Another method to multiply a mixed number by an integer is to
change the mixed number into an improper fraction.

$$
\text { What is } 2 \frac{1}{4} \text { written as an improper fraction? } \frac{9}{4}
$$

The numerator is multiplied by the integer.

$$
9 \times 2=18
$$

$2 \frac{1}{4} \times 2=\frac{9}{4} \times 2=\frac{18}{4}=4 \frac{2}{4}$
The denominator remains the same

This answer is an improper fraction. We need to change it to a mixed number.

Using Improper Fractions

Change the mixed numbers into an improper fraction to calculate the answer.

Partitioning the Mixed Number

Another method to multiply a mixed number by an integer is to partition the whole and the fraction.

Partition the mixed number into a whole and a fraction.

Multiply the whole.
Then multiply the fraction. If the fraction answer is an improper fraction, convert it to a mixed number.

Add the answers together to find the total.

Partitioning the Mixed Number

Partition the mixed number to calculate the answer.

$$
1 \frac{3}{4} \times 5
$$

$$
1 \times 5=5 \quad \frac{3}{4} \times 5=\frac{15}{4}=3 \frac{3}{4}
$$

$$
5+3 \frac{3}{4}=8 \frac{3}{4}
$$

Partitioning the Mixed Number

Partitioning the Mixed Number

Partition the mixed number to calculate the answer.

$$
5 \frac{1}{6} \times 6
$$

$$
5 \times 6=30 \quad \frac{1}{6} \times 6=\frac{6}{6}=1
$$

$$
30+1=
$$

$$
31
$$

Which Method?

Which method is being used in these calculations?

$$
\begin{gathered}
1 \frac{3}{4} \times 5=\frac{7}{4} \times 5=\frac{35}{4}=8 \frac{3}{4} \\
2 \frac{5}{7} \times 6= \\
2 \times 6=12 \frac{5}{7} \times 6=\frac{30}{7}=4 \frac{2}{7} \\
12+4 \frac{2}{7}=16 \frac{2}{7}
\end{gathered}
$$

Which Method?

Which method do you prefer to use?
Why?

Change to an improper fraction

Partitioning the mixed number

> Repeated addition

Choose a method to calculate the answer:

$$
3 \frac{2}{3} \times 10=36 \frac{2}{3}
$$

Which method did you use?
Do you think this was the best method for this calculation?

Multiplying Mixed Numbers by an Integer

Use the skills you have learnt to complete the activity sheets.

Diving into Mastery

Dive in by completing your own activity!

Who Ran Farther?

Two friends have been running. Both say they ran the farthest. Who is correct?
Jas: $\quad 2 \frac{2}{3} \times 3=$

$$
2 \times 3=6 \quad \frac{2}{3} \times 3=\frac{6}{3}=2
$$

Roberto ran $\frac{3}{4} \mathrm{~km}$ farther than Jas.

I $\operatorname{ran} 1 \frac{3}{4} \mathrm{~km}$ on 5 days.

$$
1 \frac{3}{4} \times 5=\frac{7}{4} \times 5=\frac{35}{4}=8 \frac{3}{4} \mathrm{~km}
$$

You may have used a different method to calculate the answers.

Aim

- To multiply mixed numbers by an integer.

Success Criteria

- I can use repeated addition to multiply a mixed number by an integer.
- I can convert a mixed number to an improper fraction to multiply it by an integer.
- I can partition the mixed number into a whole and fraction to multiply itby an integer.

Regent Studies|www.regentstudies.com

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Regent Studies | www.regentstudies.com

1) a)

b) $3 \frac{2}{3} \times 4=3 \frac{2}{3}+3 \frac{2}{3}+3 \frac{2}{3}+3 \frac{2}{3}=12+\frac{8}{3}=14 \frac{2}{3}$
C) $3 \times 4=12$
$\frac{2}{3} \times 4=\frac{8}{3}$
$12+\frac{8}{3}=14 \frac{2}{3}$
d) $3 \frac{2}{3} \times 4=\frac{11}{3} \times 4=\frac{44}{3}=14 \frac{2}{3}$
2) a) $5 \frac{1}{5}$
b) 7
3)

1) Accept any methods that children have correctly used to find the answer. Here is one method that they could have used:
a) $2 \frac{1}{4} \times 4=$

$$
\begin{aligned}
& 2 \times 4=8 \\
& \frac{1}{4} \times 4=1 \\
& 8+1=9 \text { litres of water }
\end{aligned}
$$

b) $4 \frac{2}{3} \times 4=$

$$
\begin{aligned}
& 4 \times 4=16 \\
& \frac{2}{3} \times 4=\frac{8}{3}=2 \frac{2}{3}
\end{aligned}
$$

$$
16+2 \frac{2}{3}=18 \frac{2}{3} \text { tablespoons of bubble mixture }
$$

2) a) $2 \frac{3}{5} \times 3<2 \frac{5}{10} \times 4$

$$
7 \frac{4}{5}<10
$$

b) $4 \frac{3}{4} \times 2<3 \frac{5}{6} \times 3$

$$
9 \frac{1}{2}<11 \frac{1}{2}
$$

c) $2 \frac{3}{4} \times 4>5 \frac{1}{4} \times 2$

$$
11>10 \frac{1}{2}
$$

1) Here are two possible solutions:
$3 \frac{3}{4} \times 3=2 \frac{3}{12} \times 5$
$1 \frac{3}{4} \times 3=2 \frac{5}{8} \times 2$
2) A mixed number is multiplied by an even integer and has an answer less than 8 . The denominator in the mixed number is 5 . The numerator is greater than 2.
a) Which of these calculations could it be? Tick the possibilities.

$1 \frac{3}{5} \times 2 \boldsymbol{\lambda}$	$4 \frac{3}{5} \times 1$	$1 \frac{3}{5} \times 6$	$1 \frac{3}{5} \times 4 \boldsymbol{\lambda}$
$2 \frac{3}{5} \times 2 \boldsymbol{}$	$1 \frac{4}{5} \times 2 \boldsymbol{\lambda}$	$1 \frac{4}{5} \times 5$	$2 \frac{1}{5} \times 4$

b) Write a different calculation that it could be. Accept answers that meet the criteria, for example,
$1 \frac{4}{5} \times 4$
$2 \frac{4}{5} \times 2$
$3 \frac{3}{5} \times 2$
$3 \frac{4}{5} \times 2$
3) Children should create their own word problems for a partner to solve.

1) Class 5 are exploring different methods of multiplying mixed numbers.
a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation.
$3 \frac{2}{3} \times 4=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad $=$ \qquad
c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately. Complete her calculation.
$3 \times 4=$ \qquad

\qquad $+$ \qquad $=$ \square
d) Vicky converted the mixed number to an improper fraction to multiply. Show her calculation.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
3) Match the calculation to the correct answer.

4) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need? \square
b) How many tablespoons of washing-up liquid will he need? \square
\square
2) Complete the statements using the symbols $<$, $>$ or $=$.
a) $2 \frac{3}{5} \times 3 \square 2 \frac{5}{10} \times 4$
b) $4 \frac{3}{4} \times 2$
 $3 \frac{5}{6} \times 3$
c) $2 \frac{3}{4} \times 4$ \square $5 \frac{1}{4} \times 2$

-

1) What could the value of the missing digits be? Find two possible solutions.
$\square \frac{\square}{4} \times 3=2 \underline{3} \times \square$

\square
2) A mixed number is multiplied by an even integer and has an answer less than 8 . The denominator in the mixed number is 5 . The numerator is greater than 2.
a) Which of these calculations could it be? Tick the possibilities.

$1 \frac{3}{5} \times 2$	$4 \frac{3}{5} \times 1$	$1 \frac{3}{5} \times 6$	$1 \frac{3}{5} \times 4$
$2 \frac{3}{5} \times 2$	$1 \frac{4}{5} \times 2$	$1 \frac{4}{5} \times 5$	$2 \frac{1}{5} \times 4$

b) Write a different calculation that it could be.
\qquad
\qquad
\qquad
3) Write a problem that involves multiplying mixed numbers for your partner to solve.
\qquad
\qquad
\qquad

1) Class 5 are exploring different methods of multiplying mixed numbers.

a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation.

$$
3 \frac{2}{3} \times 4=
$$

\qquad $+$ \qquad $+$ \qquad $+$
\qquad $=$ \qquad $=$ \qquad
c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately. Complete her calculation.
$3 \times 4=\square \quad \frac{2}{3} \times 4=$
\qquad $+$ \qquad $=$ \qquad
d) Vicky converted the mixed number to an improper fraction to multiply.
Show her calculation.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
3) Match the calculation to the correct answer.

1) Class 5 are exploring different methods of multiplying mixed numbers.
a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation.

$$
3 \frac{2}{3} \times 4=
$$

\qquad $+$ \qquad $+$ \qquad $+$
\qquad $=$ \qquad $=$ \qquad
c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately.
Complete her calculation.
\square
\qquad

d) Vicky converted the mixed number to an improper fraction to multiply. Show her calculation.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
3) Match the calculation to the correct answer.

1) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need?
b) How many tablespoons of washing-up liquid will he need?
2) Complete the statements using the symbols <, > or $=$.
a) $2 \frac{3}{5} \times 3$
 $2 \frac{5}{10} \times 4$
b) $4 \frac{3}{4} \times 2$
 $3 \frac{5}{6} \times 3$
c) $2 \frac{3}{4} \times 4$
 $5 \frac{1}{4} \times 2$

1) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need?
b) How many tablespoons of washing-up liquid will he need?
2) Complete the statements using the symbols <, > or $=$.

$$
\text { a) } 2 \frac{3}{5} \times 3 \bigcirc 2 \frac{5}{10} \times 4
$$

b) $4 \frac{3}{4} \times 2$
 $3 \frac{5}{6} \times 3$
c) $2 \frac{3}{4} \times 4$
 $5 \frac{1}{4} \times 2$

$$
=
$$

1) What could the value of the missing digits be? Find two possible solutions.

2) A mixed number is multiplied by an even integer and has an answer less than 8 . The denominator in the mixed number is 5 . The numerator is greater than 2.
a) Which of these calculations could it be? Tick the possibilities.

$1 \frac{3}{5} \times 2$	$4 \frac{3}{5} \times 1$
$2 \frac{3}{5} \times 2$	$1 \frac{4}{5} \times 2$
$1 \frac{3}{5} \times 6$	$1 \frac{3}{5} \times 4$
$1 \frac{4}{5} \times 5$	$2 \frac{1}{5} \times 4$

b) Write a different calculation that it could be.
3) Write a problem that involves multiplying a mixed number for your partner to solve.

1) What could the value of the missing digits be? Find two possible solutions.

2) A mixed number is multiplied by an even integer and has an answer less than 8. The denominator in the mixed number is 5 . The numerator is greater than 2.
a) Which of these calculations could it be? Tick the possibilities.

$1 \frac{3}{5} \times 2$	$4 \frac{3}{5} \times 1$
$2 \frac{3}{5} \times 2$	$1 \frac{4}{5} \times 2$
$1 \frac{3}{5} \times 6$	$1 \frac{3}{5} \times 4$
$1 \frac{4}{5} \times 5$	$2 \frac{1}{5} \times 4$

b) Write a different calculation that it could be.
3) Write a problem that involves multiplying a mixed number for your partner to solve.

Multiplying Mixed Numbers by an Integer

To multiply mixed numbers by an integer.

1) Use repeated addition to calculate the answers. Draw models to help you if you need to. An example has been provided.
a) $1 \frac{1}{3} \times 4=5 \frac{1}{3}$

$1 \frac{1}{3}+1 \frac{1}{3}+1 \frac{1}{3}+1 \frac{1}{3}=$
4 wholes (4) and 4 thirds $\left(1 \frac{1}{3}\right)=5 \frac{1}{3}$

b) $2 \frac{1}{5} \times 6=$
c) $2 \frac{2}{7} \times 4=$
2) Change each fraction to an improper fraction to calculate the answers.

An example has been provided.
a) $2 \frac{2}{3} \times 4=\frac{8}{3} \times 4=\frac{32}{3}=10 \frac{2}{3}$
b) $3 \frac{1}{5} \times 3=$
c) $1 \frac{1}{6} \times 5=$
3) Partition the mixed number to calculate the answer. An example has been provided.
a) $2 \frac{3}{4} \times 3=8 \frac{1}{4}$

$$
2 \times 3=6
$$

$\frac{3}{4} \times 3=\frac{9}{4}=2 \frac{1}{4}$
$6+2 \frac{1}{4}=8 \frac{1}{4}$
b) $2 \frac{2}{3} \times 5=$
C) $4 \frac{2}{5} \times 4=$

Multiplying Mixed Numbers by an Integer Answers

1)

b) $2 \frac{1}{5} \times 6=13 \frac{1}{5}$
c) $2 \frac{2}{7} \times 4=9 \frac{1}{7}$
2)
b) $3 \frac{1}{5} \times 3=9 \frac{3}{5}$
c) $1 \frac{1}{6} \times 5=5 \frac{5}{6}$
3)
b) $2 \frac{2}{3} \times 5=13 \frac{1}{3}$
c) $4 \frac{2}{5} \times 4=17 \frac{3}{5}$

Multiplying Mixed Numbers by an Integer

To multiply mixed numbers by an integer.

Repeated
addition

Partitioning the mixed number

1) For each calculation, choose one of the methods to calculate the answer and another to check your answer. Make sure you use each method at least once.

$3 \frac{1}{5} \times 4=$	Check using another method
Method 1	
$5 \frac{3}{8} \times 3=$	Check
Method 1	

2) Six friends took part in a sponsored swim. They each swam $1 \frac{5}{8} \mathrm{~km}$.

How many kilometres did they swim in total?
\square
3) To answer a problem, this calculation needs to be completed: $2 \frac{3}{4} \times 5$ Write a problem to match the calculation. Answer your problem.

Multiplying Mixed Numbers by an Integer Answers

1) Two different methods used to obtain the correct answer.
a) $3 \frac{1}{5} \times 4=12 \frac{1}{5}$
b) $5 \frac{3}{8} \times 3=16 \frac{1}{8}$
c) $2 \frac{7}{8} \times 8=23$
2) $9 \frac{6}{8}$ or $9 \frac{3}{4}$
3) Multiple answers possible. The answer to the problem is $13 \frac{3}{4}$

Multiplying Mixed Numbers by an Integer

To multiply mixed numbers by an integer.

1) For each calculation, use every method and then decide which method was best for that calculation and why.

$5 \frac{1}{5} \times 4=$		
Repeated addition	Change to improper fraction	Partition mixed number
Which method was best and why?		
$7 \frac{6}{8} \times 3=$		
Repeated addition	Change to improper fraction	Partition mixed number
Which method was best and why?		
$4 \frac{5}{6} \times 8=$		
Repeated addition	Change to improper fraction	Partition mixed number
Which method was best and why?		

2) Is one method always better for you. If so, which do you prefer and why? If not, can you identify why some questions are most suited to a particular method?
\qquad
\qquad

If I calculate $4 \times 2 \frac{2}{5}$ and $2 \times 4 \frac{2}{5}$, I will have the same answer
3) Do you agree? Explain how you know.

Hint: Partitioning the mixed numbers may help your explanation.

Multiplying Mixed Numbers by an Integer Answers

1) Each method is used to calculate the answers. Children will have a variety of answers to explain which method is best. Example of the possible reasons:
Repeated addition is efficient if the fraction multiplication doesn't go over one whole.
Changing to an improper fraction is efficient as you only have to deal with one fraction.
Changing to an improper fraction gives a large number to multiply which can be difficult and time consuming.
Partitioning the mixed number gives a smaller number to multiply which can make it more efficient.
a) $5 \frac{1}{5} \times 4=20 \frac{4}{5}$
b) $7 \frac{6}{8} \times 3=23 \frac{2}{8}$
c) $4 \frac{5}{6} \times 8=38 \frac{4}{6}$
2) Children may prefer to always use one method. Give them credit when children identify that repeated addition could be quicker for smaller numbers, partitioning will make it easier to calculate larger multiplications and changing to an improper fraction will need less steps. Some methods can be done mentally which could make them more efficient.
3) Disagree. If you partitioned the mixed numbers:
4×2 and $4 \times \frac{2}{5} \quad 2 \times 4$ and $2 \times \frac{2}{5}$
The whole number multiplication answers would be the same, but the fraction multiplication would not. $4 \times \frac{2}{5}$ is greater than $2 \times \frac{2}{5}$.
$4 \times 2 \frac{2}{5}=9 \frac{3}{5}$
$2 \times 4 \frac{2}{5}=8 \frac{4}{5}$

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

Fractions | Multiply Mixed Numbers by Integers

To multiply mixed numbers by an integer.		
I can use repeated addition to multiply a mixed number by an integer.		
I can convert a mixed number to an improper fraction to multiply it by an integer.		
I can partition the mixed number into a whole and fraction to multiply it by an integer.		

